назад Оглавление вперед


[Старт] [1] [2] [3] [4] [5] [ 6 ] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33]


6

когда значение параметра отличается от бифуркацнонно го на е). Устойчивость равновесия переходит к циклу, само же равновесие становится неустойчивым.

Б. В положении равновесия умирает неустойчивый предельный цикл; область притяжения положения равновесия уменьшается с ним до нуля, после чего цикл исчезает, а его неустойчивость передается равновесному состоянию.

А. Пуанкаре заметил, а А. А. Андронов и его ученики еще до войны (в 1939 г.) доказали, что, кроме описанной

Рис, 19. Бифуркация рождения цикла

выше (п. 5) потери устойчивости положений равновесия сливающихся с неустойчивыми, и только что описанных способов потери устойчивости типа А или Б в общих одно-параметрических семействах систем с двухмерным фазовым пространством никаких иных видов потери устойчивости не встречается. Позже было доказано, что и в системах с фазовым пространством большей размерности потеря устойчивости положений равновесия при изменении одного параметра происходит каким-либо из описанных выше способов (по направлениям всех дополнительных осей координат при изменении параметра равновесие остается притягивающим).

Если наше положение равновесия - установившийся режим в реальной системе, то при изменении параметра в случаях А и Б наблюдаются следующие явления.

А. После потери устойчивости равновесия установившимся режимом оказывается колебательный периодический режим (рис. 17); амплитуда колебаний пропорциональная



квадратному корню из закритичности (отличия параметра от критического значения при котором равновесие теряет устойчивость).

Этот вид потери устойчивости называется мягкой потерей устойчивости, так как устанавливающийся колебательный режим при малой закритичности мало отличается от состояния равновесия.

Б. Перед тем как установившийся режим теряет устойчивость, область притяжения этого режима становится

очень малой, и всегда присутствующие случайные возмущения выбрасывают систему из этой области еще до того, как область притяжения полностью исчезает.

Этот вид потери устойчивости называется жесткой потерей устойчивости. При этом система уходит со стационарного режима скачком (см. рис. 18) и перескакивает на иной режим движения. Этот режим может быть другим устойчивым стационарным режимом, или устойчивыми колебаниями, или более сложным движением.

Установившиеся режимы движения получили в последние годы название аттракторов, так как они «притягивают» соседние режимы (переходные процессы). {Аттрактор, т. е. притягатель,- это притягивающее множество в фазовом пространстве. Аттракторы, отличные от состояний равковесий и строго периодических колебаний, получили название странных аттракторов и связываются с проблемой турбулентности.]

Существование аттракторов с экспоненциально расходящимися фазовыми кривыми на них и устойчивость такого рода явлений были установлены в самом начале шестидесятых годов в работах С. Смейла, Д. В. Аносова и Я. Г. Синая по структурной устойчивости динамических систем.

Независимо от этих теоретических работ метеоролог Лоренц в 1963 г. описал наблюдавшийся им в численных экспериментах по моделированию конвекции аттрактор

Рис. 17. Мягкая потеря устойчивости равновесия

Рис. 18. Жесткая потеря устойчивости равновесия



в трехмерном фазовом пространстве с разбегающимися по нему в разные стороны фазовыми кривыми (рис. 19) и указал на связь этого явления с турбулентностью.

В работах Аносова и Синая экспоненциальное разбе-гание было установлено, в частности, для движения материальной точки по поверхности отрицательной кривизны

верхности. Кривизна этой поверхности по многим направлениям отрицательна, что приводит к быстрому разбега-нию траекторий, т. е. к плохой предсказуемости течения по начальным условиям. В частности, из этого вытекает практическая невозможность долгосрочного динамического прогноза погоды: для предсказания всего на 1-2 месяца вперед нужно знать начальные условия с погрешностью 10~5 от погрешности предсказания.

Вернемся, однако, к режиму, установившемуся после потери устойчивости равновесного состояния, и предположим, что этот режим - странный аттрактор (т. е. не равновесие и не предельный цикл).

Переход системы на такой режим означает, что в ней наблюдаются сложные непериодические колебания, детали которых очень чувствительны к малому изменению начальных условий, в то время как усредненные характеристики режима устойчивы и не зависят от начального условия (при его изменении в некоторой области). Экспериментатор, наблюдающий за движением такой системы, назвал бы его турбулентным. По-видимому, неупорядоченные движения жидкости, наблюдаемые при потере устойчивости ламинарного течения с увеличением числа Рейнольдса (т. е. с уменьшением вязкости), математически описываются именно такими сложными аттракторами в фазовом пространстве жидкости. Размерность этого аттрактора, по-видимому, конечна при любом числе Рей-

(пример такой поверхности - седло). Первые применения теории экспоненциального разбе-гания к изучению гидродинамической устойчивости опубликованы в 1966 г.

Рис. 19. Хаотический аттрактор

Движение жидкости можно описать как движение материальной точки по искривленной бесконечномерной ио-

[Старт] [1] [2] [3] [4] [5] [ 6 ] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33]