назад Оглавление вперед


[Старт] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [ 29 ] [30] [31] [32] [33]


29

По словам поэта:

Мир создан купно. Целостность его Не устает показывать планета - И вот в глаза бросается родство То тут, то там сияющего света. Наверно, есть какое-то ядро, Откуда свет расходится повсюду: И в зрелый свет сентябрьских щедрот, И в нашей жизни трепетное чудо.

Описание в терминах теории особенностей было найдено в 1983 г. для всех групп Кокстера, порожденных отражениями в евклидовых пространствах, включая некристаллографические, вроде Hs и #4.

Группы Въ, С * и F4 связаны с краевыми особенностями функций (1978). Катастрофисты, кажется, все еще не заметили связей теории краевых особенностей с простейшими (и важнейшими) случаями так называемой теории несовершенных бифуркаций. Более сложные случаи последней связаны с теорией Горюнова проектирований полных пересечений, которая является далеким обобщением теории краевых особенностей. В теории Горюнова, в частности, исключительная группа F4 оказывается родоначальником целого семейства особенностей FH, к > 4.

Геометрическая интерпретация каустики F4 найдена И. Г. Щербак. Рассмотрим поверхность с краем в обычном трехмерном евклидовом пространстве. Каустика поверхности с краем состоит из трех поверхностей: фокального множества исходной поверхности (образованного ее центрами кривизны), фокального множества граничной кривой (являющегося огибающей семейства нормальных плоскостей) и поверхности, составленной из нормалей к исходной поверхности в граничных точках. Для поверхностей с краем общего положения в отдельных точках край касается направления главной кривизны. В окрестности фокальной точки на нормали к поверхности, проведенной в такой точке края, каустика поверхности локально диффеоморфна каустике группы F4 (рис. 84).

#3, группа симметрии икосаэдра, связана с перестройками эвольвент плоской кривой вблизи ее точки перегиба. В соответствующей плоской задаче об обходе препятствий график многозначной функции времени диффеоморфен многообразию нерегулярных орбит группы Я3; он диффеоморфен также объединению касательных к кривой х = t, у = t\ z = t5 (О. В. Ляшко, О. П. Щербак). В задаче об обходе препятствия в трехмерном пространстве



то же многообразие описывает особенность фронта в некоторых точках на поверхности препятствия.

7/4 - это группа симметрии правильного 600-гранника в четырехмерном евклидовом пространстве. Чтобы описать этот многогранник, начнем с группы вращений икосаэдра. При двулистном накрытии SU(2) ->- SO(3) эта группа из 60 вращений накрывается «бинарной группой икосаэдра» из 120 элементов. Группа SU(2) естественно изометрична трехмерной сфере, и 120 элементов бинарной группы образуют набор вершин искомого правильного многогранника в четырехмерном пространстве.

Рассмотрим теперь задачу об обходе препятствия в трехмерном пространстве. График (многозначной) функции времени является гиперповерхностью в четырехмерном пространстве-времени. Для задачи об обходе препятствия общего положения эта гиперповерхность локально

множества поверхности с краем

диффеоморфна многообразию нерегулярных орбит группы Н4 в некоторой точке. А именно, нужная точка лежит на касательной к геодезической на поверхности препятствия, имеющей в параболической точке касания асимптотическое для поверхности направление (О. П. Щербак, 1984).



Добавление ПРЕДШЕСТВЕННИКИ ТЕОРИИ КАТАСТРОФ

Сначала мысль, воплощена

В поэму сжатую поэта,

Как дева юная, темна

Для невнимательного света;

Потом, осмелившись, она

Уже увертлива, речиста,

Со всех сторон своих видна,

Как искушенная жена

В свободной прозе романиста;

Болтунья старая, затем

Она, подъемля крик нахальный,

Плодит в полемике журнальной

Давно уж ведомое всем.

Е. Баратынский

Не претендуя на полноту, я приведу здесь несколько ярких работ, авторы которых рассматривали особенности, бифуркации и катастрофы в системах общего положения, возникающих в различных областях знания.

Каустики встречаются уже у Леонардо да Винчи, название им дал Чирнгаузен.

В 1654 г. Гюйгенс построил теорию эволют и эвольвент плоских кривых, обнаружив одновременно устойчивость точек возврата на каустиках и волновых фронтах (т. е. сборок соответствующих отображений). Перестройки фронтов на плоскости исследовались Лопиталем (около 1700 г.) и Кэли в 1868 г.

Гамильтон в 1837-1838 г. применил исследование критических точек семейств функций к изучению особенностей систем лучей в геометрической оптике, вроде конической рефракции и двойного лучепреломления.

Якоби в лекциях по динамике (1866) исследовал каустики системы геодезических эллипсоида, выходящих из одной точки, и обнаружил устойчивость точек возврата на каустиках.

[Старт] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [ 29 ] [30] [31] [32] [33]