назад Оглавление вперед


[Старт] [1] [ 2 ] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33]


2

Таким образом, отображение задается в локальных координатах формулами уг - х\ + А» Уг = #а.

На горизонтальной плоскости-проекции выделяется полукубическая парабола с точкой возврата (острием) в начале координат. Эта кривая делит горизонтальную плоскость на две части; меньшую и большую. Точки меньшей части имеют по три прообраза (в них проектируется три точки поверхности), точки большей части - лишь по одному, точки кривой - по два. При подходе к кривой из меньшей части два прообраза (из трех) сливаются и исчезают (в этом месте особенность - складка), при подходе к острию сливаются все три прообраза.

Уитни доказал, что сборка устойчива, т. е. всякое близкое отображение имеет в подходящей близкой точке подобную же особенность (т. е. такую особенность, что продеформированное отображение в подходящих координатах в окрестности указанной точки записывается теми же формулами, какими записывалось исходное отображение в окрестности исходной точки). Уитни также доказал, что всякая особенность гладкого отображения поверхности на плоскость после подходящего малого шевеления рассыпается на складки и сборки.

Таким образом, видимые контуры гладких тел общего положения имеют точки возврата в местах, где проектирования имеют сборки и не имеют других особенностей: приглядевшись, мы можем найти эти точки возврата в чертах каждого лица или тела. Рассмотрим, например, поверхность гладкого тора (скажем, надутой шины). Тор обычно рисуют так, как это изображено на рис. 3. Если

бы тор был прозрачным, мы увидели бы видимый контур, изображенный на рис. 4: соответствующее отображение тора на плоскость имеет четыре сборки. Таким образом, концы линии видимого контура на рис. 3 - это точки возврата, в этих точках линия видимого контура имеет полукубическую особенность»

Рис. 3. Видимый контур тора

Рис. 4. Четыре сборки проектирования тора на плоскость



Прозрачный тор редко где увидишь. Рассмотрим другое прозрачное тело - бутылку (предпочтительно из-под молока). На рис. 5 видны две точки сборки. Покачивая бутылку, мы можем убедиться, что сборка устойчива.

Тем самым мы получаем убедительное экспериментальное подтверждение теоремы Уитни.

После основополагающей работы Уитни теория особенностей бурно развивалась, и сейчас это одна из центральных областей математики, в которой перекрещиваются пути, связывающие самые абстрактные разделы математики (дифференциальную и алгебраическую геометрию и топологию, теорию групп, порожденных отражениями, коммутативную алгебру, теорию комплексных пространств и т. д.) с самыми прикладными (теория устойчивости движения динамических систем, теория бифуркаций положений равновесия, геометрическая и волновая оптика и т. д.). К. Зиман предложил называть совокупность теории особенностей и ее приложений теорией катастроф.

Поскольку гладкие отображения встречаются повсеместно, повсюду должны встречаться и их особенности. А поскольку теория Уитни дает значительную информацию об особенностях отображений общего положения, можно попытаться использовать эту информацию для изучения большого количества разнообразных явлений и процессов во всех областях естествознания. В этой простой идее и состоит вся сущность теории катастроф.

В случае, когда отображение, о котором идет речь, достаточно хорошо известно, имеется в виду более или менее прямое применение математической теории особенностей к различным явлениям природы. Такое применение, действительно приводит к полезным результатам, например в теории упругости и в геометрической оптике (теория особенностей каустик и волновых фронтов о которых мы еще будем говорить дальше).

Рис. 5. Экспериментальная проверка теоремы Уитни

з. приз

ИМЕНЕНИЯ ТЕОРИИ УИТНИ



Однако в большинстве работ по теории катастроф речь идет о куда более спорной ситуации, когда не только неизвестно изучаемое отображение, но и само его существование весьма проблематично.

Приложения теории особенностей в этих ситуациях носят характер спекуляций: чтобы дать о них представление, мы воспроизводим принадлежащий английскому математику К. Зиману пример спекулятивного применения теории Уитни к исследованию деятельности творческой личности.

Будем характеризовать творческую личность (например, ученого) тремя параметрами, называемыми «техника», «увлеченность», «достижения». По-видимому, между этими

параметрами должна быть зависимость. Тем самым возникает поверхность в трехмерном пространстве с координатами

(т, у, д).

Спроектируем эту поверхность на плоскость (Т, У) вдоль оси Д. Для поверхности общего положения особенности - складки и сборки (по теореме Уитни). Утверждается, что сборка, расположенная так, как это изображено на рис. 6, удовлетворительно описывает наблюдаемые явления.

Действительно, посмотрим, как в этих предположениях будут меняться достижения ученого в зависимости от его техники и увлеченности. Если увлеченность невелика, то достижения монотонно и довольно медленно растут с техникой. Если увлеченность достаточно велика, то наступают качественно новые явления. В этом случае достижения с ростом техники могут расти скачком (такой скачок будет, например, если техника и увлеченность меняются вдоль кривой 1 на рис. 6 в точке 2). Область высоких достижений, в которую мы при этом попадаем, обозначена на рис. 6 словом «гении».

С другой стороны, рост увлеченности, не подкрепленный соответствующим ростом техники, приводит к катастрофе (на кривой 3 в точке 4, рис. 6), при которой достижения скачком падают, и мы попадаем в область, обозначенную на рис. 6 словом «маньяки». Поучительно,,

Рис. 6. Модель «ученый» в пространстве «техника - увлеченность - достижения»

[Старт] [1] [ 2 ] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33]