назад Оглавление вперед


[Старт] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [ 45 ] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89]


45

20-дневных прибылей. Этот четырехгодичный цикл не зависит ОТ разрешения данных. «Джокер» появляется в среднем каждые четыре года, рассматриваем ли мы однодневные или более длинные периоды. Другими словами, дело не в том, какое количество точек мы имеем, а в том, сколько периодов охватывают эти данные. Это в корне отличается от стандартного статистического анализа, где более важно количество точек, нежели длина исследуемого временного ряда. Следовательно, дневные данные за четыре года, или 1040 наблюдений, не дадут такого замечательного результата, какой могут дать месячные данные за сорок лет, или всего 480 наблюдений.

Причина здесь в том, что дневные данные образуют только один цикл, а месячные - десять циклов. Из этого следует, что надо быть очень внимательным к стандартам, которые мы применяем в нелинейном анализе. Обычный метод привлечения большого количества данных помогает в анализе только тогда, когда исследуется ПВ (независимые идентично распределенные данные). Тогда время не имеет значения - в противоположность количеству наблюдений. Однако нелинейные системы имеют стрелу времени. Время не может быть повернуто вспять, и длина временного периода более важна, чем разрешение данных. Фактически увеличение разрешения часто делает анализ более затруднительным, но не повышает значимость результатов.

Итак, мы обнаружили два факта в подкрепление гипотезы фрактального рьшка (FMH):

1. Показатель Херста Н, который является величиной, обратной по отношению к фрактальной размерности, устой-хтир т.тя ттетявиеимы ттерипппв пррмрни. Чртьтрр гтрсятилет-них периода дали однородные величины Н, - это впечатляющий результат, если принять во внимание то, как изменился мир за последние 60 лет.

2. Для приращений, больших или равных 30 дням, FMH дает приблизительно равные величины Я, колеблющиеся между 0.78 и 0.81.

Однако имели место и некоторые сюрпризы. При разрешении, большем 30 дней, мы получили меньшую величину Н. Чем больше приращение, тем больше величина Н, пока мы не достигнем 30-дневного периода. Кроме того, была оо-наружена конечная величина памяти (четыре года), безотносительная к разрешению данных. Я хотел бы остановиться на этих двух моментах.



Более низкая величина Н может наблюдаться в тех случаях, когда имеется большой случайный шум в данных или явление «возвратных значений». Из этого следует, что дви-ясение в дневных ценах акций больше подвержено возвратам, чем это свойственно им в более длинных временных периодах. Третье объяснение может состоять в том, что ценовые изменения в коротких временных периодах не независимы - как это утверждает фрактальная модель, но, напротив, содержат некоторые марковские кратковременные зависимости.

Мандельброт в 1963 г., изучая цены на хлопок, склонялся к этому третьему объяснению. Он замечал, что эти цены ведут себя не совсем так, как предсказывает теория. В частности: «... большие изменения не чередуются регулярно с периодами плавных перемен, они, похоже, склонны «промахиваться» и заходить дальше своих пределов. Подобным же образом ценовые изменения в периоды спокойствия выглядят более гладкими, чем это предсказывает фрактальный процесс».

Другими словами, большие изменения цен следуют своим законам, малые -своим. Мандельброт утверждает, что отдельные ценовые изменения не являются независимыми, как гласит его оригинальная модель, но содержат марковские кратковременные зависимости. Редкие резкие перемены, предсказанные оригинальной моделью, должны порождаться изменением периода колебаний. Периоды без резких изменений должны быть мягче. Такой процесс может дать значение Я ниже, чем процесс без марковских зависимостей, так как последние, будучи кратковременными, становятся слабее с увеличением временного приращения и при этом можно ожидяттч ррлитния и тяби.изятппт л. Пр11б.71Т11?телы10 v чение месяца марковский процесс диссипирует, в результате него Я становится устойчивой величиной, равной 0.78.

Эта марковская зависимость не должна смешиваться с долговременной зависимостью, или Иосиф-эффектом. По-едний сохраняется постоянно, хотя он может быть неизмерим после цикла, когда теряется память о начальных условиях. Зависимость Херста означает, что сегодняшние события всегда продолжают влиять на будущее, и это влияние нико-Да не может быть устранено. Марковские зависимости бы-Ро распадаются, обращаясь в шум.

вторая неожиданность, состоящая в том, что четырехго-

Чный «цикл» независим от разрешения данных, имеет боль-

значение ддя количественного анализа. Во-первых, это



означает, что долговременная зависимость может и должна измеряться с использованием месячных данных. Некоторые математические работы указывают на смещение, которое появляется при использовании малых выборок или коротких временных рядов. Однако, принимая во внимание этот подход к анализу временных рядов, мы должны помнить, что фрактальные распределения аддитивны. Каждый временной интервал имеет достаточное количество заключенных в течение него сделок. Таким образом, нам не требуется еще больше наблюдений. Что нужно- так это как можно более длинный временной ряд.

Все это имеет большое значение для исследований хаоса. Мы сможем использовать эту информацию - четырехгодичный цикл и редукцию до обычного шума в тридцатидневных интервалах - как помощь в нелинейном динамическом анализе.

В итоге эти находки подчеркивают то обстоятельство, что мы должны пересмотреть многие методы статистической диагностики, которыми пользовались в прошлом. Очень немногие из них значимы в рамках нелинейного анализа, где независимость редка и поэтому нет оснований ее ждать.

НАСКОЛЬКО УСТОЙЧИВА ВОЛАТИЛЬНОСТЬ?

Мы видели, ЧТО дисперсия не подвержена скейлингу так, как ЭТО должно было бы быть. Однако это не значит, что волатильность сама по себе неустойчива. В соответствии с гипотезой фрактального рынка дисперсия, или квадратный корень из tipp. т р гтлпдартпоп отк.топрппг. - неопределенны и те-довательно, не имеется устойчивого среднего и дисперсии. Волатильность должна быть антиперсистентна.

Для проверки антиперсистентности я провел Д/5-анализ волатильности. В качестве временного ряда были взяты помесячные данные - стандартные отклонения дневных прибылей-с января 1945 по июль 1990 гг., или примерно за 45 лет. На рис. 9.7 представлена кривая изменений этого ряда в двойных логарифмических координатах. Она в высшей степени антиперсистентна, при Н = 0.39. Это один из немногих антиперсистентных рядов, которые найдены в экономике-Если волатильность возрастала в последний месяц, то наиболее вероятно ее уменьшение в следующем месяце. Поскольку Н меньше 0.50, то нет и среднего значения в этом распредеде-

[Старт] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [ 45 ] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89]