назад Оглавление вперед


[Старт] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [ 34 ] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102]


34

Стратегии игрока А

Если игрок А выбирает стратегию а, а игрок В - стратегию Ь, то результат для игрока А составит -10, а для игрока В -I-10. Задача каждого игрока состоит в том, чтобы выбрать стратегию, максимизирующую искомый результат, учитывая стратегию другого игрока. Так, с точки зрения игрока А, наилучшие реакции на три возможные стратегии игрока В составляют следующие пары: (bj, а), (Ь, а), (Ц, а). Для игрока Б наилучшие реакции на три возможные стратегии игрока А составляют следующие пары: (а, Ь), (а, bj), (aj, bj). Единственной пересекающейся стратегией здесь является пара (а, bj), которая присутствует в наилучших реакциях обоих игроков. Таким образом, одновременный выбор 2-й и 3-й стратегий игроков А и В соответственно и будет являться решением настоящей матрицы результатов. Однако жизненная практика показывает, что не все так просто. Во-первых, игроки могут и не догадываться о наилучшем выборе, принимая решения на основании других решающих правил. Во-вторых, действия игроков очень редко бывают одновременными, что дает одному из игроков преимущество. В-третьих, стратегий может быть неисчислимое множество. В-четвертых, в жизни матрицы результатов являются динамическими системами в отличие от представленного выше статического примера.

Тем не менее маркет-мейкеры (в широком понимании этого слова) практически постоянно вынуждены соизмерять свои действия с поведением, как действующим, так и возможным, других участников, в том числе рыночной массой в целом.

Главной проблемой выбора наилучшей стратегии игры являются недостаток и неопределенность информации. Это предопределяет необходимость использования вероятностных методов в ходе решения матрицы.

К теории игр можно подойти также с той точки зрения, что рьшок представляет собой сообщество игроков, в котором могут договориться толь-

ной стратегии. Здесь стоит отметить, что игроком в целях теории игр признается только активный участник, который может влиять на ситуацию и действия других игроков. Пассивные участники, которые только следуют за рынком, игроками при всем их желании называться не могут.

Пример. Представленная ниже матрица результатов представляет результаты игрока А в игре с нулевой суммой для двух участников:

Стратегии игрока В



ко крупные игроки. Соответственно только они могут получить выгоду от сотрудничества и максимизировать свои доходы. Все остальные вынуждены действовать строго в одиночку и соперничать друг с другом и с крупными игроками. Согласно теории игроки, не сотрудничающие между собой, неизбежно будут от соперничества терять. Это означает, что мелкие игроки получают выигрыш, только тогда, когда крупные игроки с ними делятся.

Подход теории игр мне кажется более обоснованным для применения на финансовых рынках по сравнению с теорией случайных блужданий. Причиной этого является, с моей точки зрения то, что

все последующие числа неслучайных рядов порождены предыдущими, что и кто бы ни пытался оказать на них влияние.

Как мы увидим позже, это выражение полностью соответствует теории бифуркаций и теории хаоса.

Теория вероятностей

Многое из ранее сказанного дает нам основание относиться к рыночным явлениям как к случайным и соответственно применять теорию вероятностей (theory of probabilities). Таким образом, без понимания теории вероятностей предпринимать последующие шаги вряд ли имеет смысл.

Вероятность представляет собой количественную меру того, что какое-либо случайное событие произойдет. Вероятность может принимать значение в промежутке от О (невозможное событие) до 1 (событие, которое обязательно наступит). Иногда вероятность описывают в процентах. В этом случае нижняя и верхняя границы значения вероятностей будут равны О и 100% соответственно.

Классическая формула для определения вероятности наступления случайного события X выглядит следующим образом:

Р(х) = -, N

где Nx - количество вариантов возможного наступления случайного события х;

N- общее количество возможных исходов. Пример. Бросая игральную кость, мы можем получить шесть возможных исходов - выпадение одной из шести граней игральной кости: 1,2,3, 4, 5 или 6. Таким образом, можно определить вероятность выпадения одной из граней, например 3:



Р(х) = -«0.1667 или 16.67%. 6

Таким образом, вероятность выпадения одной из граней игральной кости (в нашем примере 3) составляет 16.67%.

Можно также определить вероятность выпадения одной из двух граней (например, 2 или 3). В этом случае используется правило сложения вероятностей, а вероятноГть рассчитывается следуюш;им образом:

Р(х8; 8у) = Р{х) + Р{у) = 0.1667 + 0.1667 = 0.3333 или 33.33%,

где Р(х) - вероятность наступления случайного события х (в нашем примере 2);

Р(у) - вероятность наступления случайного события у (3).

Таким образом, вероятность выпадения грани с цифрой 2 или 3 равна 33.33%.

Правило сложения вероятностей используется для зависимых событий, когда одно случайное событие исключает наступление другого случайного события.

Если необходимо найти вероятность одновременного наступления двух и более случайных событий, используется правило умножения вероятностей. При этом все события должны быть независимы друг от друга.

Пример. В результате одновременного броска двух игральных костей мы можем получить 36 различных комбинаций: 1 - 1,1-2,1-3,1-4,1- 5, 1-6, 2-1, 2-2, 2-3 и т.д. Для определения вероятности того, что в результате подбрасьшания мы получим на гранях обеих игральных костей по 1, используем правило умножения вероятностей:

Р(х8; 8у) = Р{х)хР{у) = 0.1667x0.1667 = 0.0278 или 2.78%

Таким образом, вероятность одновременного выпадения на двух игральных костях граней с цифрой 1 равна 2.78%.

[Старт] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [ 34 ] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102]