назад Оглавление вперед


[Старт] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [ 66 ] [67] [68] [69] [70] [71]


66

Нейронные сети и экспертные системы

Рассмотрим теперь отношения нейрокомпьютинга и экспертных систем. Обе эти технологии иногда относят к направлению Искусственный Интеллект, хотя строго говоря, термин искусственный интеллект появился в 70-е годы в связи с экспертными системами, как направления альтернативного нейронным сетям.

/Первая конференция по проблемам искусственного интеллекта состоялась в США в 1969 году -в этом же году и была опубликована критическая книга Минского и Пейперта "Персептроны".

Его основатели - Марвин Минский и Эдвард Фейгенбаум посчитали излишней апелляцию к архитектуре мозга, его нейронным структурам, и декларировали необходимость моделирования работы человека со знаниями. Тем самым, поставив в центр внимания операции с формальнологическими языковыми структурами, они заведомо выбрали ориентацию на имитацию обработки информации левым полушарием мозга человека. Системы обработки таких формализованных знаний были названы экспертными, поскольку они должны были воспроизводить ход логических рассуждений эксперта (вьюокопрофессионального специалиста) в конкретной предметной области. Эти рассуждения проводятся с использованием правил вывода, которые инженер знаний должен извлечь у эксперта.

Заметим, что в настоящее время распространено более широкое толкование систем искусственного интеллекта. К ним относят не только экспертные , но и нечеткие системы, нейронные сети и всевозможные комбинации, такие как нечеткие экспертные системы или нечеткие нейронные системы. Отдельным направлениями, выделяются также эвристический поиск, в рамках которого в 80-е годы Ньюэллом и Саймоном был разработан Общий Решатель Задач (GPS - General Problem Solver), а также обучающиеся машины (Ленат, Холланд). И если GPS не мог решать практические задачи, то машинная обучающаяся система EURISCO внесла значительный вклад в создание СБИС, изобретя трехмерный узел типа И/ИЛИ.

Однако, экспертные системы претендовали именно на решение важных прикладных задач прежде всего в таких областях, как медицина и геология. При этом соответствующая технология в сочетании с нечеткими системами была в 1978 году положена японцами в основу программы создания компьютеров 5-го поколения.

Практические выводы

Джон Такер провел тщательное сравнительное исследование использования логистической регрессии и нейронных сетей и определил следующее их принципиальное различие, которое сохраняет свое значение и при общем сопоставления статистики и нейрокомпьютинга. В то время как статистические методы фокусируются на оптимальном методе выбора переменных, нейрокомпьютинг ставит во главу угла предобработку этих переменных. Если нейронная сеть представляет собой многослойный персептрон, то функцией скрытых слоев и является такая последовательная предобработка данных. Вследствие этого нейронные сети занимают уникальное место среди методов обработки данных, превосходя их в универсальности и сложности, оставаясь при этом data-driven методом мало чувствительным к форме данных как таковых.

Главный практический вывод, который может сделать читатель, сводится к фразе, уже ставшей афоризмом:

"Если ничего не помогает, попробуйте нейронные сети".



Нейронные сети

Экспертные системы

Аналогия

правое полушарие

левое полушарие

Объект

данные

знания

Вывод

отображение сетью

правила вывода

Важным преимуществом нейронных сетей является то, что разработка экспертных систем, основанных на правилах требует 12-18 месяцев, а нейросетевых - от нескольких недель до месяцев.

Рассматривая извлечение знаний из обученных нейронных сетей мы уже показали, что представление о них, как о черных ящиках, не способных объяснить полученное решение (это представление иногда рассматривается как аргумент в пользу преимущества экспертных систем перед нейросетями), неверно. В то же время, очевидно, что как и в случае мозга, в котором левое и правое полушарие действуют сообща, естественно и объединение экспертных систем с искусственными нейронными сетями. Подобные синтетические системы могут быть названы нейронными экспертными системами - этот термин использовал Иржи Шима, указавший на необходимость интеграции достоинств обоих типов систем. Такая интеграция может осуществляться двояким образом. Если известна только часть правил, то можно либо инициализировать веса нейронной сети исходя из явных правил, либо инкорпорировать правила в уже обученные нейронные сети. Шима предложил использовать и чисто коннекционистский методику построения нейронных эксперных систем, которая обладает таким достоинством, как возможность работы с неполными данными (ситуация типичная для реальных баз данных). Такой возможностью обладают введенные им сети интервальных нейронов.

Сети интервальных нейронов

Ситуация, в которой некоторые данные не известны или не точны, встречается достаточно часто. Например, при оценке возможностей той или иной фирмы, можно учитывать ее официально декларируемый капитал, скажем в 100 миллионов, но лучше всего считать, что в действительности его величина является несколько большей и меняется в интервале от 100 до 300 млн. Удобно ввести в данном случае специальные нейроны, состояния которых кодируют не бинарные или непрерывные значения, а интервалы значений. В случае, если нижняя и верхняя граница интервала совпадают, то состояния таких нейронов становятся аналогичными состояниям обычных нейронов.

£У Парадокс искусственного интеллекта заключается в том, что как только некоторая, кажущаяся интеллектуальной, деятельность оказывается искусственно реализованной, она перестает считаться интеллектуальной. В этом смысле наибольшие шансы остаться интелелктуальными имеют как раз нейронные сети, из которых еще не извлечены артикулированные знания.

Сопоставление экспертных систем и нейрокомпьютинга выявляет различия, многие из которых характерны для уже отмечавшихся в первой лекции различий обычных компьютеров (а экспертные системы реализуются именно на традиционных машинах, главным образом на языке ЛИСП и Пролог) и нейрокомпьютеров

Таблица 3. Сравнение методов нейронных сетей и экспертных систем



1 + е

1 + е

- + -

\ + е~

Pi - обратная температура.

Интервальное значение, которое принимает / -й нейрон при данном воздействии, равно

(а,,й,> = (5,(х,),5,(,)> где

5Дх) =

\ + е

Передаточная функция интервального нейрона приблизительно отражает идею монотонности по отношению к операции интервального включения. Это означает, что при у5 -> да , если вход

у-го нейрона лежит в интервале (aj,bj , то выход /- го нейрона, определенный по

классической функции Ферми, обязательно попадет в интервал {aj,bl). Интервальные

нейроны могут являться элементами многослойных персептронов. В этом случае их состояния вычисляются последовательно, начиная от входного слоя к выходному. Для сетей интервальных нейронов может быть построено обобщение метода обратного распространения ошибки, описание которого выходит за рамки нашего курса.

Нейронные сети и нечеткая логика

Системы нечеткой логики (fuzzy logics systems) могут оперировать с неточной качественной информацией и объяснять принятые решения, но не способны автоматически усваивать правила их вывода. Вследствие этого, весьма желательна их кооперация с другими системами обработки информации для преодоления этого недостатка. Подобные системы сейчас активно используются в различных областях, таких как контроль технологических процессов, конструирование, финансовые операции, оценка кредитоспособности, медицинская диагностика и др. Нейронные сети используются здесь для настройки функций принадлежности нечетких систем принятия решений. Такая их способность особенно важна при решении экономических и финансовых задач, поскольку вследствие их динамической природы функции принадлежности неизбежно должны адаптироваться к изменяющимся условиям.

Хотя нечеткая логика может явно использоваться для представления знаний эксперта с помощью правил для лингвистических переменных, обычно требуется очень много времени для конструирования и настройки функций принадлежности, которые количественно определяют эти переменные. Нейросетевые методы обучения автоматизируют этот процесс и существенно сокращают время разработки и затраты на нее, улучшая при этом параметры системы.

Для интервального нейрона / на каждый его вход j подается не одно , а пара значений,

определяющая границы интервала, в котором лежит величина воздействия у-го

нейрона. Воздействие, оказываемое на / -й нейрон со стороны всех связанных с ним нейронов само лежит в интервале (х,, , где

[Старт] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [ 66 ] [67] [68] [69] [70] [71]