назад Оглавление вперед


[Старт] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [ 22 ] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71]


22

Правило обучения Ойа

От этого недостатка, однако, можно довольно просто избавиться, добавив член, препятствующий возрастанию весов. Так, правило обучения Ойа:

AwJ = rjyXj -yWj, или в векторном виде: Aw = J]y{x -yw),

максимизирует чувствительность выхода нейрона при ограниченной амплитуде весов. В этом легко убедиться, приравняв среднее изменение весов нулю. Умножив затем правую часть на w ,

видим, что в равновесии: О = (>)(l-w). Таким образом, веса обученного нейрона

расположены на гипер-сфере:

= 1.

Рисунок 3. При обучении по правилу Ойа, вектор весов нейрона располагается на гипер-сфере в направлении, максимизирующем проекцию входных векторов.

Отметим, что это правило обучения по существу эквивалентно дельта-правилу, только обращенному назад - от входов к выходам (т.е. при замене х >>). Нейрон как бы старается

воспроизвести значения своих входов по заданному выходу. Тем самым, такое обучение стремится максимально повьюить чувствительность единственного выхода-индикатора к многомерной входной информации, являя собой пример оптимального сжатия информации.

Эту же ситуацию можно описать и по-другому. Представим себе персептрон с одним (здесь -линейным) нейроном на скрытом слое, в котором число входов и выходов совпадает, причем веса с одинаковыми индексами в обоих слоях одинаковы. Будем учить этот персептрон воспроизводить в выходном слое значения своих выходов. При этом, дельта-правило обучения верхнего (а тем самым и нижнего) слоя примет вид правила Ойа:

Aw" осу"(х"-х") = у"(х"-y"w).



Рисунок 4. Автоассоциативная сеть с узким горлом - аналог правила обучения Ойа

Таким образом, существует определенная параллель между самообучающимися сетями и т.н. автоассоциативными сетями, в которых учителем для выходов являются значения входов. Подобного рода нейросети с узким горлом также способны осуществлять сжатие информации.

Взаимодействие нейронов: анализ главных компонент

Единственный нейрон осуществляет предельное сжатие многомерной информации, выделяя лишь одну скалярную характеристику многомерных данных. Каким бы оптимальным ни было сжатие информации, редко когда удается полностью охарактеризовать многомерные данные всего одним признаком. Однако, наращиванием числа нейронов можно увеличить выходную информацию. В зтом разделе мы обобщим найденное ранее правило обучения на случай нескольких нейронов в самообучающемся слое, опираясь на отмеченную выше аналогию с автоассоциативными сетями.

Постановка задачи

Итак, пусть теперь на том же наборе /-мерных данных {х } обучается т линейных нейронов: = Etiyy Etiyy = W, • X (/ = 1,...,т).

Рисунок 5. Слой линейных нейронов

Мы хотим, чтобы амплитуды выходных нейронов были набором независимых индикаторов, максимально полно отражающих информацию о многомерном входе сети.



Необходимость взаимодействия нейронов

Если мы просто поместим несколько нейронов в выходной слой и будем обучать каждый из них независимо от других, мы добьемся лишь многократного дублирования одного и того же выхода. Очевидно, что для получения нескольких содержательных признаков на выходе исходное правило обучения должно быть каким-то образом модифицировано - за счет включения взаимодействия между нейронами.

Самообучающийся слой

В нашей трактовке правила обучения отдельного нейрона, последний пытается воспроизвести значения своих входов по амплитуде своего выхода. Обобщая это наблюдение, логично было бы предложить правило, по которому значения входов восстанавливаются по всей выходой информации. Следуя этой линии рассуждений получаем правило Ойа для однослойной сети:

в векторном виде: Aw/ = rjyjx - Укк\

Такое обучение эквивалентно сети с узким горлом из т скрытых линейных нейронов, обученной воспроизводитьна выходе значения своих входов.

Рисунок 6. Автоассоциативная сеть с узким горлом - аналог правила обучения Ойа

Скрытый слой такой сети, так же как и слой Ойа, осуществляет оптимальное кодирование входных данных, и содержит максимально возможное при данных ограничениях количество информации.

Сравнение с традиционным статистическим анализом

Вывод о способности нейронных сетей самостоятельно выделять наиболее значимые признаки в потоках информации, обучаясь по очень простым локальным правилам, важен с общенаучной точки зрения. Изучение этих механизмов помогает глубже понять как функционирует мозг. Однако есть ли в описанных выше нейроалгоритмах какой-нибудь практический смьюл?

Действительно, для этих целей существуют хорошо известные алгоритмы стандартного статистического анализа. В частности, анализ главных компонент также выделяет основные

[Старт] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [ 22 ] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71]