кредитным/дебетным картам. Искусственные нейросети обучаются типичному поведению клиентов, различая резкую смену характера покупок, сигнализирующую о возможной краже. Ежегодные потери крупных банков от подобных краж измеряются десятками миллионов долларов, и когда в 1994 г. впервые за всю историю пластиковых карт эти потери пошли на убыль, этот прогресс пресса связывала с успешным внедрением системы Falcon. Клиентами HNC Software являются 16 из 25 крупнейших в мире эмитентов пластиковых карт. (Пресс-релиз HNC Software http: www.hnc. с от)
& Активная реклама в Internet. Нейросетевой продукт SelectCast фирмы Aptex Software Inc. (дочерней фирмы HNC Software Corp.) выявляет профили интересов пользователей Internet и предлагает им соответствующим образом отфильтрованную рекламу. В июле 1997 года один из лидеров поискового рынка Internet - Excite, Inc. лицензировала SelectCast для использования на своих поисковых серверах. После установки иа серверах Excite и Infoseek, нейросетевая реклама охватит около трети всех пользователей Internet. Согласно проведенным исследованиям, установлено, что отклик иа такую активную рекламу в среднем вдвое выше, чем на обычную рекламу, размещаемую в Сети. А на отдельные виды рекламы отклик возрос впятеро. Заметим, что рекламный сектор Internet переживает сейчас период бурного развития. Результаты первого полугодия 1997 года свидетельствуют о годовом темпе роста 250%, что в денежном выражении составит в 1997 году $400 мли. (Scientific American, Dec 1997, "On-line Advertising goes one-on-one".)
& Мониторинг и персонализированная рассылка новостей. Распознавание темы текстовых сообщений - другой пример успешного использования искусственных нейросетей. Сервер новостей Convectis (продукт все той же Aptex Software Inc. http: www.aptex.com) выбран в июне 1997г. лидером персонализированной доставки новостей в Internet - PointCast Inc. - для автоматической рубрикации сообщений по категориям. Сверяя значения слов по контексту, Convectis способен в реальном масштабе времени распознавать тематику и рубрицировать огромные потоки текстовых сообщений, передаваемых по сетям Reuters, NBC, CBS и др. Так, например, информационное агентство Scoop, специализирующееся иа поставке бизиес-новостей и также лицензировавшее Convectis в июле 1997г., использует свыше 1600 источников информации. После анализа сообщения Convectis генерирует аннотацию, список ключевых слов и список рубрик, к которым относится данное сообщение. Существуют и другие электронные агентства новостей, использующие нейросети для рубрикации и персонализации информации (см., например, http: www.wisewire-corp.com)
Приведенные выше примеры свидетельствуют о том, что нейросетевая обработка данных постепенно становится неотъемлемой компонентой высоких технологий, определяющих жизнь современного мира. На них будут опираться новые военные доктрины, они будут контролировать нашу безопасность и торговать на электронных биржах, на них основываются нарождающиеся масс-медиа в глобальной сети Internet. Интерфейс с этой глобальной Сетью, постепенно превращающейся в единый распределенный компьютер, также, по-видимому, будет основываться на нейросетевых обучаемых агентах - представителях пользователя в Сети.
Что же это такое - искусственные нейронные сети? Какое отношение имеют искусственные нейросети к естественным? Чем отличается нейрокомпьютинг от обычных методов компьютерного моделирования? Каковы его "экологические ниши" в мире информационных технологий и перспективы на будущее? Этим вопросам и будет посвящена данная, вводная, глава нашей книги.
Для начала попробуем описать особенности обработки информации мозгом. Посмотрим, что из того, на что способен мозг, еще по большей части недоступно современным системам обработки информации.
Как мозг обрабатывает информацию
Из чего построен мозг
Мозг построен из клеток двух типов: глиальных и нейронов. И хотя роль алии в его работе, видимо, довольно значительна, большинство исследователей полагает, что в основном понимание работы мозга может быть достигнуто при изучении нейронов, объединенных в единую связанную сеть. Эта парадигма и используется при построении, изучении и применении искусственных нейронных сетей, которым посвящена эта книга.
& Следует, однако, заметить, что имеются и другие точки зрения. В частности, такие ученые как Пенроуз и Хамерофф считают, что главные события происходят не в нейронной сети, а в самих клетках, а именно в их цитоскелетоне, в так называемых микротрубочках. Согласно их точке зрения, и память, и даже сознание определяются конформационными изменениями белков во внутриклеточных структурах и связанными с ними квантовыми эффектами.
Количество нейронов в мозге оценивается величиной 10°-10\ Типичные нейроны имеют тело клетки (сому), множество ветвящихся коротких отростков - дендритов и единственный длинный и тонкий отросток - аксон. На конце аксон также разветвляется и образует контакты с дендритами других нейронов - синапсы (Рисунок 1).
дендриты
Нейрон
аксон

Рисунок 1. Схема нейрона и межнейронного взаимодействия
Внутриклеточное пространство нейрона имеет отрицательный электрический потенциал по отношению к внеклеточному (-70 mV), то есть клетка в целом поляризована. Поляризация возникает за счет избирательной проницаемости клеточной мембраны для ионов натрия и калия, приводящей к разнице их концентраций внутри и вне клетки. Однако, если внешним образом достаточно сильно изменить потенциал мембраны одного нейрона (передатчика) вблизи выхода аксона из его клеточного тела, то проницаемость мембраны меняется и перераспределение ионов во внутриклеточном и внеклеточном пространстве аксона приводит к распространению по нему волны кратковременной деполяризации. Электрический импульс.
"Достаточно сильное" изменение означает, что оно должно превосходить некоторое пороговое значение, которое может быть специфичным для каждого нейрона.
распространившись по всем ветвлениям окончания аксона со скоростью около 100 м/с, достигает синапсов, расположенных в местах его контакта с дендритами или сомой других клеток. Под воздействием этого импульса в синапсах выделяются специальные химические вещества - нейромедиаторы, которые, пересекая синаптическую щель, взаимодействуют с мембраной нейрона-приемника и изменяют ее потенциал. Таким образом воздействие передается от одного нейрона к другим. Заметим, что это воздействие может являться как возбуждающим - способствующим дальнейшей генерации волны деполяризации в нейроне-приемнике, так и ингибирующим - препятствующим такой генерации. Тип воздействия определяется химической природой нейромедиатора, выделяющегося в синапсе.
После генерации импульса нейрон некоторое время {период рефрактерности) не может активироваться. Поэтому частота, с которой нейрон может генерировать импульсы ограничивается примерно 100 Гц.
Каждый из нейронов устанавливает синаптические связи в среднем с другими нейронами. Поэтому число связей в мозге оценивается в 10" -10. Очень грубо можно считать, что нейроны мозга могут находиться в двух состояниях - возбужденном (когда они предают свое воздействие другим нейронам) и покоящемся (когда такой передачи нет).
До сих пор неизвестно, каким кодом пользуется нервная система для передачи взаимодействия. Может быть, он является бинарным, и значение имеют указанные состояния нейронов. Возможно, важна частота электрической активности нейронов, кодирующая интенсивность сигнала. Например, у нейронов коры эта частота может быть пропорциональна вероятности некоторого события. Наконец, информация может содержаться не в импульсных процессах, а в более медленных изменениях потенциала мембраны, которые не всегда активируют клетку (т.е. не превышают порога активации). Однако при любом предположении модель сети взаимодействующих нейронов оказывается исключительно богатой и обладающей свойствами, которые можно сопоставить с реальными возможностями мозга.
Структура и функции мозга
Мозг управляет организмом в целом, его восприятием окружения, движением, поддержанием важнейших функций жизнедеятельности, оперативно реагируя на всевозможные изменения среды. Генетическая программа организма, конечно, тоже способна адаптироваться к изменяющимся условиям, но очень медленно, за счет крайне редких полезных мутаций. Если использовать только этот способ, то необходимо производить огромное потомство, только малая часть которого выживает. Этим методом пользуются низшие формы жизни - такие как бактерии и вирусы. Высшие же формы в ходе эволюции выработали у себя способность к изменению и адаптации в течение жизни - благодаря особому свойству своей нервной системы - пластичности. Поэтому у высших животных потомство немногочисленно, зато мозг сильно развит.
Объем накопленной в мозге информации вначале дополнял, а затем и превзошел (у рептилий и млекопитающих) объем наследственной информации, закодированной в ДНК (см. Рисунок 2). Можно сказать, что генетическая информация у высших организмов исполняет роль ракеты-носителя, направляя процесс построения организма. Затем управление передается адаптирующейся к внешнему миру нервной системе, вершиной которой и является мозг.
Болезненность родов у человека как раз и является платой за опережающее развитие мозга, сопровождающееся увеличением его объема.