назад Оглавление вперед


[Старт] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [ 12 ] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71]


12

Коннекционизм

Отличительной чертой нейросетей является глобальность связей. Базовые элементы искусственных нейросетей - формальные нейроны - изначально нацелены на работу с широкополосной информацией. Каждый нейрон нейросети, как правило, связан со всеми нейронами предыдущего слоя обработки данных (см. Рисунок 3, иллюстрирующий наиболее широко распространенную в современных приложениях архитектуру многослойного персептрона). В этом основное отличие формальных нейронов от базовых элементов последовательных ЭВМ - логических вентилей, имеющих лишь два входа. В итоге, универсальные процессоры имеют сложную архитектуру, основанную на иерархии модулей, каждый из которых выполняет строго определенную функцию. Напротив, архитектура нейросетей проста и универсальна. Специализация связей возникает на этапе их обучения под влиянием конкретных данных.

Рисунок 3. Глобальность связей в искуственных нейросетях

Типичный формальный нейрон производит простейшую операцию - взвешивает значения своих входов со своими же локально хранимыми весами и производит над их суммой нелинейное преобразование:

у = f{u), u = w+ Yyii

<

Рисунок 4. Нейрон производит нелинейную операцию над линейной комбинацией входов

Нелинейность выходной функции активации /(•) принципиальна. Если бы нейроны были

линейными элементами, то любая последовательность нейронов также производила бы линейное преобразование, и вся нейросеть была бы эквивалентна одному нейрону (или одному слою нейронов - в случае нескольких выходов). Нелинейность разрушает линейную суперпозицию и приводит к тому, что возможности нейросети существенно выше возможностей отдельных нейронов.



Ло1ьность и параллелизм вычислений

Массовый параллелизм нейро-вычислений, необходимый для эффективной обработки образов, обеспечивается локальностью обработки информации в нейросетях. Каждый нейрон реагирует лишь на локальную информацию, поступающую к нему в данный момент от связанных с ним таких же нейронов, без апелляции к общему плану вычислений, обычной для универсальных ЭВМ. Таким образом, нейросетевые алгоритмы локальны, и нейроны способны функционировать параллельно.

Программирование: обучение, основанное на данных

Отсутствие глобального плана вычислений в нейросетях предполагает и особый характер их программирования. Оно также носит локальный характер: каждый нейрон изменяет свои "подгоночные параметры" - синаптические веса - в соответствии с поступающей к нему локальной информацией об эффективности работы всей сети как целого. Режим распространения такой информации по сети и соответствующей ей адаптации нейронов носит характер обучения. Такой способ программирования позволяет эффективно учесть специфику требуемого от сети способа обработки данных, ибо алгоритм не задается заранее, а порождается самими данными - примерами, на которых сеть обучается. Именно таким образом в процессе самообучения биологические нейросети выработали столь эффективные алгоритмы обработки сенсорной информации.

Характерной особенностью нейросетей является их способность к обобщению, позволяющая обучать сеть на ничтожной доле всех возможных ситуаций, с которыми ей, может быть, придется столкнуться в процессе функционирования. В этом их разительное отличие от обычных ЭВМ, программа которых должна заранее предусматривать их поведение во всех возможных ситуациях. Эта же их способность позволяет кардинально удешевить процесс разработки приложений.

Универсальность обучающих алгоритмов

Привлекательной чертой нейрокомпьютинга является единый принцип обучения нейросетей -минимизация эмпирической ошибки. Функция ошибки, оценивающая данную конфигурацию сети, задается извне - в зависимости от того, какую цель преследует обучение. Но далее сеть начинает постепенно модифицировать свою конфигурацию - состояние всех своих синаптических весов - таким образом, чтобы минимизировать эту ошибку. В итоге, в процессе обучения сеть все лучше справляется с возложенной на нее задачей.

Не вдаваясь в математические тонкости, образно этот процесс можно представить себе как поиск минимума функции ошибки w), зависящей от набора всех синаптических весов сети w (см. Рисунок 5).



= -УЕМ

Рисунок 5. Обучение сети как задача оптимизации

Базовой идеей всех алгоритмов обучения является учет локального градиента в пространстве конфигураций для выбора траектории быстрейшего спуска по функции ошибки. Функция ошибки, однако, может иметь множество локальных минимумов, представляющих суб-оптимальные решения. Поэтому градиентные методы обычно дополняются элементами стохастической оптимизации, чтобы предотвратить застревание конфигурации сети в таких локальных минимумах. Идеальный метод обучения должен найти глобальный оптимум конфигурации сети".

В дальнейшем нам встретится множество конкретных методов обучения сетей с разными конфигурациями межнейронных связей. Чтобы не потерять за деревьями леса, полезно заранее ознакомиться с базовыми нейро-архитектурами. В следующем разделе мы приведем такого рода классификацию, основанную на способах кодирования информации в сетях (обучения) и декодирования (обработки) информации нейросетями.

Классификация базовых нейроархитектур

Типы обучения нейросети

Ошибка сети зависит, как уже говорилось, от конфигурации сети - совокупности всех ее синаптических весов. Но эта зависимость не прямая, а опосредованная. Ведь непосредственные значения весов скрыты от внешнего наблюдателя. Для него сеть - своего рода черный ящик, и оценивать ее работу он может лишь основываясь на ее поведении, т.е. на том, каковы значения выходов сети при данных входах. Иными словами, в общем виде функция ошибки имеет вид:

Здесь (х",у" - набор примеров (т.е. пар входов-выходов), на которых обучается нейросеть, а

y(x",w) - реальные значения выходов нейросети, зависящие от конкретных значений ее

синаптических весов. Такой способ обучения, когда действительный выход нейросети сравнивают с эталонным, называют обучением с учителем.

Иногда выходная информация известна не полностью. Например, вместо эталонных ответов известно лишь хуже или лучше данная конфигурация сети справляется с задачей (вспомним

Напомним определение идеала как принципиально недостижимой цели, к которой, тем не менее, следует стремиться.

[Старт] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [ 12 ] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71]