10. Предсказание рисков и рейтингование
Зачем нужны и какие бывают рейтинги? Нейросетевое рейтингование ценных бумаг. Предсказание банкротств. Возможно ли объективное рейтингование? Пример нейросетевого анализа российских банков.
11. Нейросети и
Нейронные сети и статистика. Нейронные сети и нечеткая логика. Нейронные сети и экспертные системы. Нейронные сети и статистическая физика.
12. Заключение
Еще несколько примеров применений нейросетей в бизнесе: оценка стоимости квартир в Москве, карта состояний фондового рынка, категоризация крупнейших компаний России. Заключение
Глава
Введение. Компьютеры и Мозг
Нейрокомпьютеры попадают в заголовки газет. Что отличает обработку информации в мозге и в современных компьютерах? Сгшвольная и образная информация. Перспективы нейрокомпьютинга.
Ш Мы наблюдаем удивительное явление: из такого безусловно пустого, абсолютно безличного материала как цифровая машина, удалось, благодаря специальным программам, сконструировать настоящие личности ... СЛем, Non serviam
Ш Правый мозг любит сладкое больше, чем левый.... И где же тут парадокс? -спросил я, стараясь как можно незаметнее оттолкнуть левую руку, которая опять совала мне пряник в рот. СЛем, Мир на Земле
Для чего и для кого написана эта книга
в этой книге, основанной на курсе лекций, прочитанном авторами в Финансово-Аналитическом Колледже МИФИ, мы знакомим читателя с основами нейросетевой обработки данных и примерами типовых применений, преимущественно в области финансов и бизнеса.
Наш опыт свидетельствует, что главным препятствием к широкому практическому применению нейрокомпьютинга служит недостаточное понимание его основ. Эта книга писалась с целью восполнить этот пробел. Поэтому основное внимание здесь уделяется описанию принципов нейросетевой обработки данных, их потенциальных возможностей и преимуществ, а также подробному разбору нескольких конкретных применений. Упор делается на концептуальной стороне дела, а не на описании конкретных алгоритмов. Предполагается, что в случае необходимости читатель сможет воспользоваться одним из многочисленных коммерческих нейро-эмуляторов, а не возьмется программировать нейросети "с нуля" на С++. Главная задача книги - научить читателя "видеть" нейросетевые постановки задач в его повседневной работе, помочь ему автоматизировать рутинную обработку сложной многофакторной информации с помощью современного математического аппарата - искусственных нейронных сетей.
Хотя мы старались избегать математических выкладок и, по возможности, упростить изложение, хотелось бы заранее предупредить, что материал этой книги рассчитан на достаточно подготовленного читателя - как минимум студента старших курсов. Наш "идеальный" читатель -студент, научный работник, финансовый аналитик, консультант, брокер или просто бизнесмен, желающий повьюить эффективность своего бизнеса путем более вдумчивой работы с доступной ему информацией.
Нейрокомпьютеры в заголовках газет
Одной из характерных черт нейрокомпьютинга является обучение на примерах. Поэтому и мы начнем с серии примеров, которые лучше любых описаний наметят возможные области практических приложений нейросетей и подкрепят решимость читателя заняться их изучением. В последнее время в прессе все чаще стали мелькать сообщения, где так или иначе упоминаются искусственные нейронные сети. Вот только несколько выдержек, иллюстрирующих возможные области применений нейросетей:
& Автопилотируемый гиперзвуковой самолет-разведчик. Названный LoFLYTE (Low-Observable Flight Test Experiment) реактивный беспилотный самолет длиной 2,5 м был разработан для NASA и Air Force фирмой Accurate Automation Corp., Chattanooga, TN в рамках программы поддержки малого инновационного бизнеса. Это экспериментальная разработка для исследования новых принципов пилотирования, включая нейронные сети, позволяющие автопилоту обучаться, копируя приемы пилотирования летчика. Со временем нейросети перенимают опыт управления, а скорость обработки информации позволит быстро находить выход в экстремальных и аварийных ситуациях. LoFLYTE предназначен для полетов со скоростью 4-5 Махов, когда скорости реакции пилота может не хватить для адекватного реагирования на изменения режима полета. (Пресс-релиз NASA №96-154 от 2 августа 1996 г.)
& Системы безопасности в аэропортах. Американская фирма SAIC (Science Application International Corporation) использовала нейронные сети в своем проекте TNA. TNA представляет собой яхцик стоимостью $750.000, который способен обнаруживать пластиковую взрывчатку в запакованном багаже. TNA бомбардирует багаж медленными нейтронами, вызывающими вторичное гамма-излучение, спектр которого анализируется нейронной сетью. Система обнаруживает взрывчатку с вероятностью выше 97% и просматривает 10 мест багажа в минуту (для Международного Аэропорта Лос-Анжелеса потребуется 10 таких систем общей стоимостью около $8 млн). SAIC получила контракт на разработку TNA от Федерального Управления по Авиации (FAA) в 1986 г и вначале пыталась для классификации спектров реализовать линейно-дискриминантный метод. Такой подход, однако, требовал крайне нежелательной предварительной сортировки багажа по габаритам. SAIC регулярно получала финансирование от FAA, близился день демонстрации ... И тогда корпорация решила использовать нейронные сети. В итоге система с требуемыми параметрами была доработана в кратчайший срок.
Нейросети на финансовых рынках. Американский Citibank использует нейросетевые предсказания с 1990 года. В 1992 году, по свидетельству журнала The Economist, автоматический дилинг показывал доходность 25% годовых, что намного превышает показатели большинства брокеров. Chemical Bank использует нейро-систему фирмы Neural Data для предварительной обработки транзакций на валютных биржах 23 стран, фильтруя "подозрительные" сделки. Fidelity of Boston использует нейросети при управлении портфелями с суммарным объемом $3 миллиарда. Полностью автоматизированные системы ведения портфелей с использованием нейросетей применяют, например, Deere & Со - на сумму $100 млн и LBS Capital - на сумму $400 млн. В последнем случае экспертная система объединяется с примерно 900 нейросетями. Труды лишь одного семинара "Искусственный интеллект на Уоллстрит" составляют шесть увесистых томов.
& Распознавание краденных кредитных карт. В 1986 году известный конструктор нейрокомпьютеров профессор Роберт Хехт-Нильсен основал компанию HNC. Переключившись в 1990 году с призводства нейрокомпьютеров на предоставление конкретных решений в различных областях, HNC Software Corp. является сейчас лидером на рынке контроля транзакций по пластиковым картам. Ее основной продукт Falcon (Сокол), выпущенный в сентябре 1992 г., контролирует сейчас более 220 млн карточных счетов, выявляя и предотвращая в реальном времени подозрительные сделки по, возможно, краденным