назад Оглавление вперед


[Старт] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [ 16 ] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75]


16

времени (хотя и в этих случайностях есть свои закономерности), то нужно помнить, что при рассмотрении многолетней динамики средние цены акций растут, т.е. вероятность их роста больше, чем падения. В этом аспекте цены можно рассматривать, как движение водомерок на поверхности реки. Их перемешения относительно поверхности случайны, но все они вместе с рекой в среднем движутся в одном направлении. В таком случае задача инвестора состоит в выборе стратегии, которая позволит удержаться на поверхности как можно дольше, чтобы река унесла цены в нужном направлении.

Если все-таки оставаться в рамках модели случайных блужданий, которая длительное время удовлетворяла теоретиков биржевых процессов, то какая стратегия может считаться оптимальной? Иными словами, какая стратегия дает минимальные средние потери при длительной игре?

Для ответа на этот вопрос проанализируем коэффициент роста К. Как уже говорилось, при случайных блужданиях он всегда меньше единицы, и наша задача - найти стратегию игры, которая максимально приблизит его к единице. Читатели, знакомые с математикой, могут убедиться, что этот коэффициент может быть представлен очень простой формулой:

Ji: ~ 1 - sl/2.

Эта формула приближенная, но она очень хорошо работает в большинстве практически интересных случаев. Из нее легко видеть, что для более долгого «удержания на плаву» необходимо ставить перед собой достаточно скромные цели, не завышая ожидаемые прибыли (величину I), и быстро обрезать потери, стараясь уменьшить величину s.

Обрезание потерь является более важным, так как величина s обычно мала и при «стопе» 5 % (s = 0,05) вы получите значительно лучший результат, чем при «стопе» 15% (s = 0,15), ибо это уменьшит произведение si в три раза, а изменение величины I с 40 % до 30 % даст относительно меньший эффект.

Другой важный способ увеличения коэффициента роста - это диверсификация, т.е. деление инвестиционного капитала между акциями нескольких компаний. Как вычисляется коэффициент роста в этом случае? Допустим, что вы купили акции п компаний, разделив ваш капитал поровну между ними. После продажи этих акций вы снова поровну делите деньги, вырученные за их продажу, и покупаете акции других п компаний. Предположим, что ваши цели каждый раз идентичны, величины S и г не зависят от выбора компаний и все купленные вами акции ведут себя независимо. Не рассматривая соответствуюшие расчеты, мы сразу напишем окончательную приближенную формулу. Если разделить капитал на п частей, то



Капитал в долларах

10000

20000

30000

40000

50000

100000

Под капиталом мы понимали сумму, доступную для трейдинга, включая деньги на маргинальном счету. Как можно видеть из этой таблицы, если вы располагаете капиталом менее 10000 долларов, то лучше эти деньги вложить в акции одной или двух компаний. Если вы ифаетс на дневных колебаниях курса акций, и соответственно интересуетесь

При увеличении п коэффициент роста стремится к единице, значит, диверсификация уменьшает средние потери.

Но подождите радоваться. Если у вас есть 1000 долларов и вы наметите разделить эти деньги между акциями 10 различных компаний по 100 долларов на компанию, то это будет самоубийственным решением. При величине брокерских комиссионных (оплата взимается за покупку или продажу акций одной компании), допустим, 30 долларов вам нужно будет получить 30 долларов или 30% прибыли на акциях каждой компании, чтобы выйти хотя бы с нулевым результатом. Эта задача нереальна даже для профессионалов. Для любого начального капитала Xq, который имеется в наличии до начала трейда, существует некоторое оптимальное разбиение в зависимости от величины комиссионных. Если обозначить величину комиссионных в долларах через С, то коэффициент роста можно записать в виде

si пС 2п Хо

при этом максимальный коэффициент роста получается, если

п = (slXo/2C)"\

Эта формула позволяет вычислить оптимальное число долей, на которые надо разбить начальный капитал для уменьшения потерь. Соблюдение данной формулы может быть не очень строгим - она допускает некоторое варьирование, которое математически связано с пологостью максимума распределения. Для иллюстрации в таблице 5.1 приведены результаты расчетов величин п в случае Z = 0,2; s - 0,02; С = 30 долларов.

Таблииа 5. /.



этом разделе мы немного отдохнем от математики и рассмотрим некую гипотетическую ситуацию. Представьте, что вы пришли в офис своего приятеля Майкла президента компании Michael & Co., которая производит замечательные авторучки и выглядит довольно успешной. И вы с порога заявляете, что, по вашему мнению, цены акций компании Майкла, как и всех других компаний, подчиняются законам случайных блужданий. Какова будет реакция Майкла?

Боюсь, что он выдворит вас из кабинета и посоветует больше никогда не приходить. И это понятно: Майкл посвятил всю свою жизнь борьбе за успех своей компании, у него нет долгов, много наличного капитала. Компания начала производство авторучек со специальными чернилами, которые легко удаляются с бумаги специальным карандашом, продающимся в комплекте с авторучкой. Продажи растут, прибыли за последний год выросли на 50%. А тут какой-то умник-теоретик заявляет о случайных блужданиях. Для чего тогда Майклу и его команде вообще ходить на работу?

Давайте лучше спросим у Майкла, как он оценивает вероятность роста своих акций в текущем году. Возможно, он ответит - 70%. Почему не 100%? А потому - как расскажет вам Майкл - что этот стирающий карандаш немного попахивает, а конкурент Джим из

прибылью 1-2% (I = 0,01-0,02), то нужно сконцентрироваться на покупке акций какой-то одной компании. Если вы инвестируете и ожидаете прибыль порядка 30-50% (I = 0,3-0,5), то лучше разбить капитал на несколько частей.

Специалисты по теории вероятностей могут продолжить начатую нами работу. Можно, например, рассмотреть задачу о случайном блуждании цены акций в предположении, что она не будет касаться нуля, а будет от него отражаться. То есть предположить, что вероятность разорения компании очень мала, что имеет смысл для компаний, представленных на нью-йоркской бирже.

Но мы не будем этим заниматься. Все эти задачи имеют только академический интерес, поскольку на бирже работают другие законы: изменение цен акций не является совершенно случайным. Что же изменится в наших рекомендациях, если предположить, что цены акций меняются не случайно? Почему они могут меняться не случайно? К ответу на эти вопросы мы сейчас и приступим.

§2. Случайны ли случайные блужлания?

[Старт] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [ 16 ] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75]