назад Оглавление вперед


[Старт] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [ 91 ] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192] [193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216] [217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240] [241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264] [265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288] [289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312] [313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336] [337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360] [361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384] [385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408] [409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432] [433] [434] [435] [436] [437] [438] [439] [440] [441] [442]


91

Пропорция выручки в странедф,

Таким образом, фирма, которая получает лишь 40% своей выручки в Индонезии, в то время как средняя индонезийская фирма получает 80% выручки в своей стране, будет иметь лямбду, равную 0,5 для индонезийского суверенного риска. Тем не менее, заметим, что если оставшиеся 60% фирма получает в Таиланде, то нам следовало бы оце-

использовать? Мы бы почти никогда не стали применять бухгалтерские коэффициенты бета - по причинам, указанным ниже. Почти с той же неохотой мы используем исторические рыночные коэффициенты бета для отдельных фирм - из-за стандартных ошибок при оценке коэффициента бета, ошибок в местных индексах (как для случая большинства компаний с фор-мируюгцихся рьшков) и неспособности этих регрессий отразить воздействия фундаментальных изменений в комбинации видов деятельности и в финансовом риске фирмы. Похоже, что наилучшими оценками нас снабжают восходящие коэффициенты бета - по трем причинам.

1.Они позволяют рассматривать изменения в комбинации видов деятельности и финансовой комбинации, даже до того, как они произошли.

2.В них используются средние коэффициенты бета по значительному числу фирм, они обычно имеют меньший уровень шумов, чем коэффициенты бета отдельных фирм.

3.Они позволяют нам вычислять коэффициенты бета, ориентируясь на сферу бизнеса фирмы, что является полезным в контексте анализа инвестиций и оценки.

Измерение степени подверженности суверенному рисну (лямбда). В главе 7 представлены концепция подверженности суверенному риску и понятие «лямбда» как мера подверженности компании суверенному риску. В этом разделе мы бы хотели с интуитивной точки зрения обсудить, какие факторы определяют эту подверженность и как наилучшим образом оценить лямбду. Воздействие на компанию суверенного риска зависит почти от всех аспектов ее деятельности, начиная с того, где расположены ее фабрики и кто ее клиенты и заканчивая тем, в какой валюте заключаются контракты и насколько успешно фирма справляется с риском валютного обмена. Однако значительная часть этих данных относится к внутренней информации, которая недоступна при проведении оценки фирмы сторонними аналитиками. На практике, в таких случаях мы можем оценить лямбду, основываясь на одном из следующих подходов.

Классификация выручки. Самый простой способ оценки лямбды - это использование доли выручки фирмы, полученной в определенной стране, и сравнение ее с долей выручки средней фирмы в стране.

Пропорция выручки в странСф, л -



Ожидаемая доходность = безрисковая ставка + 2],Pj х премия за pncKj,

где безрисковая ставка - это ставка по долгосрочным правительственным облигациям; . - коэффициент бета относительно фактора j, оцененный на основе исторических данных или фундаментальных показателей. А премия за риск.- это премия за риск по отношению к фактору j, оцененная на основе исторических данных.

нить лямбду для тайского суверенного риска и добавить этот компонент к стоимости собственного капитала. Регрессия и государственные облигации. Второй подход к оценке лямбды связан с выведением регрессий доходности акций для каждой фирмы на формирующемся рынке - в сопоставлении с доходностью государственных облигаций, выпущенных данной страной. Например, в Бразилии это предполагало бы составление регрессии доходности по каждой бразильской акции в сопоставлении с доходностью бразильской государственной облигации. Наклон линии регрессии должен измерять, насколько чувствительна акция к изменениям в суверенном риске (поскольку доходы по государственным облигациям являются прямой мерой суверенного риска) и, таким образом, этот наклон обеспечивает измерение лямбды. Например, если предположить, что регрессия доходности акций компании Embraer в сопоставлении с доходностью бразильских суверенных облигаций (C-bond) дает наклон в 0,30, а так как средний наклон для бразильских акций равен 0,75, то лямбда будет равна 0,40 (0,30/0,75).

От коэффициентов бета к стоимости собственного капитала

Оценив безрисковую ставку и премию(-и) за риск (в главе 7) и коэффициенты бета (в данной главе), мы можем теперь оценить ожидаемую доходность инвестирования в собственный капитал любой фирмы. В модели САРМ эту ожидаемую доходность можно записать следующим образом:

Ожидаемая доходность = безрисковая ставка + коэффициент бета X X ожидаемая премия за риск,

где безрисковая ставка является ставкой по долгосрочным правительственным облигациям, коэффициент бета является историческим, фундаментальным или бухгалтерским (см. описание выше), а премия за риск есть либо историческая, либо подразумеваемая премия.

В модели арбитражной оценки и многофакторной модели ожидаемая доходность описывается следующим образом:



ИЛЛЮСТРАЦИЯ 8.10. Оценка стоимости капитала для фирмы Embraer, март 2000 г.

Embraer - бразильская аэрокосмическая фирма. Для оценки стоимости ее собственного капитала мы сначала оценим безрычаговый коэффициент бета путем рассмотрения аэрокосмических фирм по всему миру.

Безрычаговый коэффициент бета для аэрокосмических фирм = 0,87.

Ожидаемая доходность от инвестиции в собственный капитал фирмы при данном уровне риска имеет серьезные практические последствия как для инвесторов в акции фирмы, так и для ее менеджеров. Что касается инвесторов акций, то это - ставка, которую они должны получить, чтобы компенсировать принятый ими риск при инвестировании в собственный капитал фирмы. Если после анализа инвестиции они придут к выводу, что им не удастся получить более высокий доход, они решат не осуществлять инвестицию. С другой стороны, если они решат, что могут получить более высокий доход, они бы пошли на инвестицию. Что касается менеджеров, то доход, требуемый инвесторами для достижения точки безубыточности в их инвестициях в акции, превращается в доход, который необходим менеджерам для удержания этих инвесторов от беспокойства и бунтов. Таким образом, он становится ставкой, которую они должны выплачивать в единицах доходности инвестиции в собственный капитал в проекте. Другими словами, эта ставка является стоимостью собственного капитала фирмы.

ИЛЛЮСТРАЦИЯ 8.9. Оценка стоимости собственного капитала компании Boeing, декабрь, 2000 г.

Теперь, когда мы имеем коэффициент бета компании Boeing (он равен 0,9585), основанный на восходящих оценках, мы можем определить стоимость собственного капитала. Для выполнения этой оценки мы использовали превалирующую ставку по казначейским облигациям США, равную 5%, и историческую премию за риск в размере 5,51%.

Стоимость собственного капитала = 5% + 0,9585 (5,51%) = 10,28%.

Необходимо сделать два замечания по поводу этой оценки. Во-первых, стоимость капитала была бы значительно ниже, если бы мы решили использовать подразумеваемую премию за риск инвестирования в акции, которая на 31 декабря 2000 г. составляла 2,87% (см. главу 7).

Стоимость собственного капитала = 5% + 0,9585 (2,87%) = 7,75%.

Второе замечание касается того, что мы не рассматриваем подверженность компании Boeing риску на формирующихся рынках, возникающему в связи с ее видом деятельности. Если риск значителен, нам следует добавить премию за суверенный риск к оценке стоимости собственного капитала.

[Старт] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [ 91 ] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192] [193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216] [217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240] [241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264] [265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288] [289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312] [313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336] [337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360] [361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384] [385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408] [409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432] [433] [434] [435] [436] [437] [438] [439] [440] [441] [442]