назад Оглавление вперед


[Старт] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [ 48 ] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192] [193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216] [217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240] [241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264] [265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288] [289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312] [313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336] [337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360] [361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384] [385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408] [409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432] [433] [434] [435] [436] [437] [438] [439] [440] [441] [442]


48

Модель оценки опционов при скачкообразном процессе

Если изменения цены остаются большими, когда временные периоды в биномиальной модели сокращаются, то уже нельзя предполагать, что цены меняются непрерывно. Когда изменения цен остаются значительными, процесс ценообразования, допускающий возможность скачков, представляется более реалистичным. Кокс и Росс (Сох and Ross, 1976) оценивали опционы в условиях скачкообразного процесса ценообразования, где скачки могут быть только положительными. То есть в очередном интервале цена акции либо совершит скачок в сторону повышения с определенной вероятностью, либо поползет вниз с определенной скоростью.

Мертон (Merton, 1976) рассмотрел распределение, где ценовые скачки накладываются на непрерывный ценовой процесс. Он определил скорость, с которой совершаются скачки (\) и средний размер скачка (к), выраженный в процентах от цены акции. Модель оценки, основывающейся на данном процессе, называется моделью диффузионных скачков (jump diffusion model). В ней стоимость опциона определяется пятью переменными, установленными в модели Блэка-Шоулза, а также параметрами скачкообразного процесса (\, к). К сожалению, оценки параметров скачкообразного процесса связаны со столь большими помехами для большинства фирм, что любые преимущества использования более реалистичной модели перестают в реальности что-либо значить. Это обусловливает ограниченность использования этих моделей на практике.

ДОПОЛНИТЕЛЬНО ОБ ОЦЕНКЕ ОПЦИОНОВ

Все модели оценки опционов, описанные до сих пор: биномиальная модель, модель Блэка-Шоулза, модель скачкообразного процесса (jump process model), - предназначены для оценки опционов с ясно определенными сроками исполнения и степенью зрелости базовых активов, обращающихся на рынке. Однако опционы, с которыми мы сталкиваемся в инвестиционном анализе или при оценке, часто основываются на реальных, а не на финансо-

Пут-опцион в этот момент торговался по 3,38 долл.

Кроме того, иллюстрация 5.4 демонстрирует оценку долгосрочного опциона на акции AT&T. Цена исполнения колл-опциона - 20 долларов, до срока истечения опциона осталось 1,8333 г., а его стоимость равна 6,63 долл. Акция продавалась по цене 20,50 долл., ожидаемая дивидендная доходность за период составляла 2,51%, а безрисковая ставка 4,85%. Стоимость пут-опциона можно оценить следующим образом:

Стоимость пут-опциона = С - S е"" -I- К е"" = 6,63 долл. -- 20,5 долл. е"!"»" -I- 20 долл. е»-»»*!"* = 5,35 долл.

Пут-опцион продавался по цене 3,80 долл. Как пут-опцион, так и колл-опцион продавались по ценам, отличающимся от наших оценок, что может указывать на неверную оценку волатильности акции.



Когда цена актива превышает К2, выплаты по колл-опциону ограничены величиной К2-К1

Выплаты по опциону колл с верхним пределом

Стоимость базового актива

Рисунок 5.5. Выплаты по опциону колл с верхним пределом

Данный вид опциона называют опционом колл с верхним пределом, или «опционом кэп» (capped option). Следует заметить, что как только цена достигает Kj, временная премия опциона исчезает, поэтому опцион будет исполнен. Опционы колл с верхним пределом относятся к семейству опционов, которые называют барьерными опционами (barrier option), отличаюгцимися тем, что выплаты и срок жизни опционов зависят от того, достигла ли цена базового актива определенного уровня в течение определенного периода времени.

Стоимость опциона колл с верхним пределом всегда ниже, чем стоимость аналогичного колл-опциона, у которого отсутствуют границы выплат. Простое приближение для стоимости такого опциона можно получить путем оценки колл-опциона дважды: первый раз - при данной цене исполнения, а второй раз - при цене исполнения, соответствуюгцей границе, после чего счедует найти разницу между двумя значениями стоимости. В предыдугцем

вых активах. Реальные активы могут принимать куда более усложненные формы. В данном разделе рассмотрены некоторые из этих вариаций.

Опционы колл с верхним пределом и барьерные опционы

В случае простого колл-опциона отсутствуют какие-либо предопределенные верхние границы прибыли, которые могут быть созданы покупателем опциона. Цена актива (по крайней мере, в теории) может свободно расти, пропорционально повыгпая выплаты. Однако в случае некоторых опционов покупатель имеет право получать прибыль только до определенной цены, но не выгпе. Рассмотрим колл-опцион с ценой исполнения по активу. В случае непокрытого колл-опциона выплата по этому опциону будет повыгпаться по мере роста цен базового актива сверх величины К. Предположим, что по достижении цены Kj выплаты урезаются до величины (К - К). Диаграмма выплат этого опциона показана на рисунке 5.5.



примере стоимость колл-опциона с ценой исполнения и границей на уровне можно записать следующим образом:

Стоимость опциона колл с верхним пределом = - Стоимость колл-опциона (К = К,) - Стоимость колл-опциона (К = К).

Барьерные опционы могут принимать разнообразные формы. В случае опциона выбытия (knockout option) опцион прекращает свое существование, если базовый актив достигает определенной цены. В случае колл-опциона цена выбытия устанавливается ниже цены исполнения, и этот опцион называется «опционом с нижней границей» (down-and-out option). В случае пут-опциона цена выбытия устанавливается выше цены исполнения, и его называют «опционом с верхней границей» (up-and-out option). Подобно колл-опционам с верхним пределом, эти опционы стоят меньше, чем их собратья, не имеющие подобных ограничений. Многие реальные опционы обладают ограничениями, связанными с потенциалом движения цены актива вверх, или может наблюдаться условие выбытия. Игнорирование таких ограничений может привести к преувеличенной оценке этих опционов.

Составные опционы

Стоимость некоторых опционов является производной не базовых активов, а других опционов. Подобные опционы называются составными, или сложными опционами (compound option). Составные опционы могут принять любую из четырех форм: колл-опцион на основе колл-опциона, пут-опцион на основе пут-опциона, колл-опцион на основе пут-опциона или пут-опцион на основе колл-опциона. Геске (Geske, 1979) разработал аналитическую формулировку для оценки составных опционов, заменив при вычислении стандартное нормальное распределение для оценки составных опционов, используемое в простых моделях, двумерным нормальным распределением.

Рассмотрим опцион для расширения проекта, который будет описан в главе 30. Хотя мы будем оценивать этот опцион с помощью простой модели оценки опционов, на самом деле расширение может происходить в несколько этапов. При этом каждый этап представляет собой опцион для последующего этапа. В этом случае мы недооценим опцион, интерпретируя его как простой, а не как составной опцион.

Даже если принять во внимание наши рассуждения, оценка составных опционов усложняется по мере добавления к цепочке новых опционов. В этом случае лучше принять за основу консервативную оценку стоимости, предоставляемую простой моделью оценки, чем потерпеть кораблекрушение, пытаясь преодолеть подводные камни оценки.

Радужные опционы

в случае простого опциона существует неопределенность относительно цены базового актива. Некоторые опционы подвержены двум или более видам

[Старт] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [ 48 ] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192] [193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216] [217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240] [241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264] [265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288] [289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312] [313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336] [337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360] [361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384] [385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408] [409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432] [433] [434] [435] [436] [437] [438] [439] [440] [441] [442]