назад Оглавление вперед


[Старт] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [ 42 ] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192] [193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216] [217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240] [241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264] [265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288] [289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312] [313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336] [337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360] [361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384] [385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408] [409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432] [433] [434] [435] [436] [437] [438] [439] [440] [441] [442]


42

Рисунок 5.3. Общая формулировка пути изменения цены в биномиальной модели

МОДЕЛИ ОЦЕНКИ ОПЦИОНОВ

Прорыв в теории оценки опционов начался в 1972 г., когда Фишер Блэк и Майрон Шоулз (Fischer Black, Myron Scholes) опубликовали свою революционную работу, где описывалась модель, позволяющая проводить оценку стоимости европейских опционов, обращающихся на фондовые активы (акции), по которым дивиденды не выплачиваются. Блэк и Шоулз использовали имитирующий портфель (replication portfolio) - т. е. портфель, составленный из базового актива и безрискового актива, который создает те же денежные потоки, что и оцениваемый опцион. Для получения результирующей формулировки был задействован механизм арбитража. Вывод модели с математической точки зрения является достаточно сложным, но существует более простая биномиальная модель для оценки опционов, использующая ту же логику.

Биномиальная модель

В основе биномиальной модели оценки опционов (binomial option pricing model) лежит элементарная формулировка процесса установления цены опциона, в котором актив в любой период времени может двигаться к одной из двух возможных цен. Общая формулировка процесса установления цены акции по биномиальной схеме, показана на рисунке 5.3. На этом рисунке S - это завершающая цена акции. Цена двигается к цене Su с вероятностью р и вниз к цене Sd с вероятностью 1 - р в любой период времени.



ИЛЛЮСТРАЦИЯ 5.1. Биномиальная оценка опциона

Предположим, что необходимо оценить колл-опцион с ценой исполнения, равной 50 долл., срок действия которого истечет через два временных периода, с базовым активом, цена которого в данный момент равна 50 долл., при этом предполагается изменение цены в соответствии с биномиальным процессом.

Цена колл-опциона

Цена исполнения колл-опциона = 50 Число периодов до истечения = 2

Создание имитирующего портфеля. Цель создания имитирующего портфеля - это использование комбинации безрискового заимствования/ссуды и базового актива для создания денежного потока, аналогичного денежному потоку, создаваемому оцениваемым опционом. В данном случае применяются принципы арбитража, и стоимость опциона должна быть равна стоимости портфеля-имитатора. В общей формулировке, представленной на рисунке 5.3, где цена акции может двигаться вверх к Su или вниз к Sd в любой период времени, портфель-имитатор для колл-опциона с ценой исполнения К включит заимствование В (долл.) и приобретение Д базового актива, где

С -С

А = Число покупаемых единиц базового актива = ---- ,

Su-Sd

гдеС = стоимость колл-опциона, если цена акции равна Su,

= стоимость колл-опциона, если цена акции равна Sd.

В биномиальном процессе со многими периодами оценка должна производиться на дискретной основе (т. е. начиная с заключительного временного периода и двигаясь назад во времени к текущем моменту). Портфели, воспроизводящие опцион, создаются для каждого шага и каждый раз оцениваются, это позволет выяснить стоимость опциона в данный период времени. Заключительный результат биномиальной модели оценки опциона - это определение стоимости опциона в единицах имитирующего портфеля, составленного из Д акций (дельты опциона) базового актива и безрискового заимствования или ссуды.

Стоимость колл-опциона = текущая стоимость базового актива X X дельта опциона - заимствование, необходимое для имитации опциона.



Х=2 Стоимость колл-опциона Имитирующий портфель 15050(100 хД)-(1,11 ХВ) = 50

(50ХД)-(1,11ХВ) = О

Решение для Д и В Д = 1; В = 45 Купить 1 акцию; занять 45 долларов

Таким образом, если цена на акцию равна 70 долл. при t = 1, то заимствование 45 долл. и покупка одной акции создадут те же самые денежные потоки, что и приобретение одного колл-опциона. Следовательно, если цена акции равна 70 долл., то при t = 1 стоимость колл-опциона равна:

Стоимость колл-опциона = Стоимость имитирующей позиции = = 70Д - В = 70 - 45 = 25

Рассмотрим другую ветвь биномиального дерева при t = 1:

t=2 Стоимоаь колл-опциона Имитирующий портфель 50О(50 X Д) - (1,11 X В) = О

(25 X Д) - (1,11 X В) = О

Решение для Д и В Д = 0; В = О

Предположим, процентная ставка равна 11%, а также определим:

Д = число акций в имитирующем портфеле,

В = сумма заимствования в портфеле-имитаторе (в долл.).

Цель - создать комбинацию из Д акций и В заимствованных долларов для воспроизведения денежных потоков, получаемых от колл-опциона с ценой исполнения 50 долл. Этого можно добиться при помощи пошагового процесса, начиная с последнего периода и двигаясь назад по биномиальному дереву.

Шаг 1. Начните с конечных узлов и двигайтесь назад:

[Старт] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [ 42 ] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192] [193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216] [217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240] [241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264] [265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288] [289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312] [313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336] [337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360] [361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384] [385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408] [409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432] [433] [434] [435] [436] [437] [438] [439] [440] [441] [442]