назад Оглавление вперед


[Старт] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [ 34 ] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192] [193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216] [217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240] [241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264] [265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288] [289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312] [313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336] [337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360] [361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384] [385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408] [409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432] [433] [434] [435] [436] [437] [438] [439] [440] [441] [442]


34

определенных коэффициентов бета. Заметим сначала, что бета портфеля является средневзвешенной величиной коэффициентов бета различных активов, входящих в портфель. Данная особенность, в сочетании с отсутствием возможности арбитража, приводит к заключению, что ожидаемые доходы находятся в линейной зависимости от коэффициентов бета. Чтобы понять причины этого, предположим, что существуют только один фактор и три портфеля. Коэффициент бета портфеля А равен 2,0, а ожидаемый доход - 20%. Коэффициент бета портфеля В равен 1,0, а ожидаемый доход - 12%. Портфель С имеет коэффициент бета, равный 1,5, а ожидаемый доход составляет 14%. Отметим также, что инвесторы могут вложить половину своего состояния в портфель А, а другую половину - в портфель С, что создаст портфель с коэффициентом бета, равным 1,5, и ожидаемым доходом 16%. Соответственно, ни один инвестор не станет держать портфель С, пока стоимость этого портфеля не упадет, и ожидаемый доход не повысится до 16%. По тем же причинам, ожидаемые доходы каждого портфеля должны находиться в линейной зависимости от коэффициента бета. Если бы этой зависимости не было, то мы смогли бы скомбинировать два других портфеля - один с более высоким коэффициентом бета, а другой с более низким, - чтобы добиться более высоких доходов по сравнению с исходным портфелем. Тем самым мы заработали бы более высокий доход, чем тот, который приносит рассматриваемый портфель, создавая возможность для арбитража. Данный аргумент можно распространить на ситуацию с множественными факторами и тем же результатом. Следовательно, ожидаемый доход на актив можно записать следующим образом:

E(R) = Rf + P,[E(R,)-Rf] +PJE(R)-R]... +pjE(RJ-Rf],

гдеRf = ожидаемая доходность портфеля с нулевым

коэффициентом бета; E(R.) = ожидаемая доходность портфеля с коэффициентом бета, равным 1 для фактора j и равным нулю для всех прочих факторов (где j = факторы 1, 2,..., К).

Элементы в квадратных скобках можно рассматривать как премии за риск каждого фактора в модели.

Модель оценки финансовых активов можно рассматривать как особый случай модели арбитражной оценки, где присутствует только один экономический фактор, создающий доходы в масштабах всего рынка, и этим фактором является рыночный портфель.

E(R) = R, + PJE(RJ-R,].

Модель арбитражной оценки на практике. Модель арбитражной оценки позволяет оценить коэффициенты бета для каждого фактора и премии за риск по факторам в дополнение к безрисковой ставке. На практике они обычно оцениваются при помощи исторических данных по доходам, приходящим-



ся на актив, и факторного анализа. На интуитивном уровне понятно, что в факторном анализе мы изучаем исторические данные на основе исторических образов, характерных скорее для значительных групп активов (чем для одного сектора или нескольких активов). Факторный анализ дает два итоговых показателя.

1.Он позволяет определить число обгцих факторов, влияющих на исторические данные по доходам.

2.Он дает возможность измерить коэффициент бета каждой инвестиции относительно любого из общих факторов и обеспечивает оценку фактических премий за риск, заработанных каждым фактором.

Тем не менее, факторный анализ не занимается идентификацией факторов с экономических позиций. Как правило, в модели арбитражной оценки рыночный риск измеряется по отнощению к множеству не поддающихся спецификации макроэкономических переменных. При этом, чувствительность инвестиции соотносится с каждым фактором, измеренным при помощи коэффициента бета. Количество факторов риска, коэффициенты бета для факторов, премии за факторы риска - все эти величины можно оценить при помощи факторного анализа.

Многофакторные модели для риска и доходности. Отказ от идентификации факторов в модели арбитражной оценки, по всей вероятности, можно оправдать, обращаясь к статистическим методам, но, вместе с тем, интуиция подсказывает, что это свидетельствует о слабости подобного подхода. Рещение кажется простым: заменить неопределяемые статистические факторы специальными экономическими факторами, и результирующая модель будет обладать экономической основой, вместе с тем сохраняя в себе многие достоинства модели арбитражной оценки. Именно на это и нацелены многофакторные модели.

Создание многофакторной модели. Как правило, многофакторные модели основаны на исторических данных, а не на экономическом моделировании. Как только в модели арбитражной оценки выявлено определенное количество факторов, их поведение можно выяснить с помощью данных. Поведение неназванных факторов во времени можно сравнить с поведением макроэкономических переменных за тот же период с целью проверки, коррелируют ли во времени какие-либо из переменных с идентифицированными факторами.

Например, Чен, Ролл и Росс (Chen, Roll and Ross, 1986) предполагают, что с факторами, полученными при помощи факторного анализа, в значительной степени коррелируют следующие макроэкономические переменные: промышленная продукция, изменения размера премии за дефолт, сдвиги во временной структуре, непредвиденная инфляция и изменения в фактической доходности. Затем можно выяснить корреляцию этих переменных с доходами (что даст нам модель ожидаемых доходов), а также с коэффициентами бета отдельных фирм, рассчитанными по отношению к каждой переменной.



Мультипликатор (в российской практике оценки стоимости принято использовать именно этот термин, хотя в других странах его называют также «коэффициентом» - Прим. науч. ред.), включающий в себя цену, вычисляется путем деления рыночной цены на прибыль или на балансовую стоимость. Исследования показали, что акции с низкими мультипликаторами «цена/прибыль» или «цена/балансовая стоимость» обеспечивают большую доходность, чем другие акции.

E(R) = R, + р,р [E(R,p)-R, ] + р, [E(R,)-Rf ]... + [E(R, )- R, ] ,

гдеPgnp ~ коэффициент бета по отношению к изменениям в

промышленном производстве; E(Rgp) = ожидаемая доходность портфеля с коэффициентом бета, равным единице для фактора промышленного производства и нулю для всех других факторов; GNP = ВНП (валовой национальный продукт);

Э, - коэффициент бета по отношению к изменениям в инфляции;

E(Rj) = ожидаемая доходность портфеля с коэффициентом бета, равным единице для фактора инфляции и нулю всех других факторов.

Издержки перехода от модели арбитражной оценки к макроэкономическим многофакторным моделям можно отнести к ошибкам, возникающим при идентификации факторов. Экономические факторы в модели могут со временем изменяться, так же как и премия за риск, связанная с каждым из них. Например, изменения цен на нефть оставались в 1970-е годы важным экономическим фактором, определяющим ожидаемые доходы, однако в другие периоды времени они не были столь важны. Использование ошибочных факторов или игнорирование важных факторов в многофакторной модели может привести к недостоверным оценкам ожидаемого дохода.

В конечном итоге, многофакторные модели, подобно моделям арбитражной оценки, предполагают, что рыночный риск может быть учтен лучше, если использовать множество экономических факторов и коэффициенты бета, соотнесенные с каждым из них. В отличие от модели арбитражной оценки, многофакторные модели нацелены на идентификацию макроэкономических факторов, определяющих рыночный риск.

Регрессия или приближенные модели. Все уже описанные модели начинают с определения рыночного риска в широком смысле, а затем развивают модели, оценивающие этот рыночный риск наилучшим образом. Однако все они извлекают свои показатели рыночного риска (бета) из анализа исторических данных. Существует целевой класс моделей риска и доходности, которые начинают с доходов и пытаются объяснить различия в этих доходах, приходящихся на разные акции, в течение длительного временного периода. Для этого используются такие характеристики, как рыночная стоимость

[Старт] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [ 34 ] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192] [193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216] [217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240] [241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263] [264] [265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [286] [287] [288] [289] [290] [291] [292] [293] [294] [295] [296] [297] [298] [299] [300] [301] [302] [303] [304] [305] [306] [307] [308] [309] [310] [311] [312] [313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [332] [333] [334] [335] [336] [337] [338] [339] [340] [341] [342] [343] [344] [345] [346] [347] [348] [349] [350] [351] [352] [353] [354] [355] [356] [357] [358] [359] [360] [361] [362] [363] [364] [365] [366] [367] [368] [369] [370] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384] [385] [386] [387] [388] [389] [390] [391] [392] [393] [394] [395] [396] [397] [398] [399] [400] [401] [402] [403] [404] [405] [406] [407] [408] [409] [410] [411] [412] [413] [414] [415] [416] [417] [418] [419] [420] [421] [422] [423] [424] [425] [426] [427] [428] [429] [430] [431] [432] [433] [434] [435] [436] [437] [438] [439] [440] [441] [442]